Знаменитости Видео знаменитостей Новости Отзывы Рейтинг RSS English
Поиск

Популярные
КОРНЕЛЮК Игорь ЕвгеньевичКОРНЕЛЮК Игорь Евгеньевич
Городилов Виктор Андреевич
БРЖЕСКИЙ Николай Корнильевич
ПЬЯНКОВА Наталья
МАШКОВСКИЙ Степан ФилипповичМАШКОВСКИЙ Степан Филиппович
ещё персоны......
Новости
Конструктор сайтов
Бесплатный хостинг
Бесплатно скачать MP3
Библиотека
Всего персон: 23932





Все персоны
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ЧЕДВИК Джеймс

(Английский физик Нобелевская премия по физике, 1935 г.)

Комментарии для ЧЕДВИК Джеймс
Биография ЧЕДВИК Джеймс
20 октября 1891 г. - 24 июля 1974 г.
Английский физик Джеймс Чедвик родился в г. Боллингтоне, вблизи Манчестера. Он был старшим из четырех детей Джона Джозефа Чедвика, владельца прачечной, и Энн Мэри (Ноулс) Чедвик. Окончив местную начальную школу, он поступил в манчестерскую муниципальную среднюю школу, где выделялся успехами в математике. В 1908 г. Ч. поступил в Манчестерский университет, собираясь изучать математику, однако по недоразумению с ним провели собеседование по физике. Слишком скромный, чтобы указать на ошибку, он внимательно выслушал вопросы, которые ему задавали, и решил сменить специализацию. Через три года он окончил университет с отличием по физике.
В 1911 г. Ч. начал аспирантскую работу под руководством Эрнеста Резерфорда в физической лаборатории в Манчестере. Именно в это время эксперименты по рассеянию альфа-частиц (которые рассматривались как заряженные атомы гелия), пропущенных через тонкую металлическую фольгу, привели Резерфорда к предположению, что вся масса атома сконцентрирована в плотном положительно заряженном ядре, окруженном отрицательно заряженными электронами, которые, как известно, обладают относительно малой массой. Ч. получил степень магистра в Манчестере в 1913 г., и в этом же году, став обладателем стипендии, он уехал в Германию, чтобы изучать радиоактивность под руководством Ханса Гейгера (бывшего ассистента Резерфорда) в Государственном физико-техническом институте в Берлине. Когда в 1914 г. началась первая мировая война, Ч. был интернирован как английский гражданин и более 4 лет провел в лагере для гражданских лиц в Рулебене. Хотя Ч. страдал от суровых условий, подтачивавших его здоровье, он принял участие в научном обществе, созданном его товарищами по несчастью. Деятельность этой группы получила поддержку со стороны некоторых немецких ученых, включая Вальтера Нернста, с которым Ч. познакомился, будучи интернирован.
Ч. вернулся в Манчестер в 1919 г. Незадолго перед этим Резерфорд обнаружил, что бомбардировка альфа-частицами (которые теперь рассматривались как ядра гелия) может вызвать распад атома азота на более легкие ядра других элементов. Несколько месяцев спустя Резерфорда выбрали на должность директора Кавендишской лаборатории Кембриджского университета, и он пригласил Ч. последовать за ним. Ч. получил стипендию Уоллестона в Гонвилл-энд-Кайус-колледже, Кембридж, и смог работать с Резерфордом, продолжая эксперименты с альфа-частицами. Они выяснили, что при бомбардировке ядер часто образуется то, что, по-видимому, является ядрами водорода, легчайшего из элементов. Ядро водорода несло положительный заряд, равный по величине отрицательному заряду соответствующего электрона, но обладало массой, примерно в 2 тыс. раз превышающей массу электрона. Резерфорд позднее назвал его протоном. Становилось ясно, что атом как целое был электрически нейтральным, поскольку число протонов в его ядре равнялось числу окружающих ядро электронов. Однако такое число протонов не согласовалось с массой атомов, за исключением простейшего случая водорода. Чтобы устранить такое расхождение, Резерфорд предложил в 1920 г. идею, что ядра могут содержать электрически нейтральные частицы, которые позднее он назвал нейтронами, образованные соединением электрона и протона. Противоположная точка зрения состояла в том, что атомы содержат электроны как вне, так и внутри ядра и что отрицательный заряд ядерных электронов просто нейтрализует часть заряда протонов. Тогда протоны ядра давали бы полный вклад в общую массу атома, а их суммарный заряд был бы как раз такой, чтобы нейтрализовать заряд окружающих ядро электронов. Хотя к предположению Резерфорда о том, что существует нейтральная частица, отнеслись с уважением, но все же не было экспериментального подтверждения этой идеи.
Ч. получил докторскую степень по физике в Кембридже в 1921 г. и был избран членом ученого совета Гонвилл-энд-Кайус-колледжа. Два года спустя он стал заместителем директора Кавендишской лаборатории. Вплоть до конца 20-х гг. он исследовал такие атомные явления, как искусственный распад ядер легких элементов под действием бомбардировки альфа-частицами и спонтанное испускание бета-частиц (электронов). В процессе этой работы он размышлял над тем, как можно было бы подтвердить существование резерфордовской нейтральной частицы, однако решающие исследования, позволившие это сделать, были проведены в Германии и Франции.
В 1930 г. немецкие физики Вальтер Боте и Ханс Беккер обнаружили, что при бомбардировке некоторых легких элементов альфа-частицами возникает излучение, обладающее особой проникающей силой, которое они приняли за гамма-лучи. Гамма-лучи впервые стали известны как излучение, порождаемое радиоактивными ядрами. Они обладали большей, чем у рентгеновских лучей, проникающей способностью, поскольку у них более короткая длина волны. Однако некоторые результаты озадачивали, особенно когда в качестве мишени для бомбардировки использовался бериллий. При этом излучение в направлении движения падающего потока альфа-частиц обладало большей проникающей способностью, чем обратное излучение. Ч. предположил, что бериллий испускает поток нейтральных частиц, а не гамма-лучи. В 1932 г. французские физики Фредерик Жолио и Ирен фолио-Кюри, исследуя проникающую способность излучения бериллия, помещали различные поглощающие материалы между бомбардируемым бериллием и ионизационной камерой, выполнявшей роль регистратора излучения. Когда в качестве поглотителя они взяли парафин (вещество, богатое водородом), то обнаружили увеличение, а не уменьшение излучения, выходящего из парафина. Проверка привела их к выводу, что усиление излучения связано с протонами (ядрами водорода), выбиваемыми из парафина проникающей радиацией. Они предположили, что протоны выбиваются в результате столкновений с квантами (дискретными единицами энергии) необычайно мощного гамма-излучения, подобно тому как электроны выбиваются при столкновении с рентгеновскими лучами (эффект Комптона) в эксперименте, впервые проведенном Артуром Х. Комптоном.
Ч. быстро повторил и расширил эксперимент, проведенный французской парой, и обнаружил, что толстая свинцовая пластина не оказывает сколько-нибудь заметного влияния на излучение бериллия, не ослабляя его и не порождая вторичного излучения, что свидетельствовало о его высокой проникающей способности. Однако парафин вновь дал добавочный поток быстрых протонов. Ч. произвел проверку, которая подтвердила, что это действительно протоны, и определил их энергию. Затем он показал, что по всем признакам крайне мало вероятно, чтобы при столкновениях альфа-частиц с бериллием могли возникать гамма-лучи с энергией, достаточной для того, чтобы выбивать протоны из парафина с такой скоростью. Поэтому он оставил идею о гамма-лучах и сосредоточился на нейтронной гипотезе. Приняв существование нейтрона, он показал, что в результате захвата альфа-частицы ядром бериллия может образоваться ядро элемента углерода, причем освобождается один нейтрон. То же самое он проделал и с бором - еще одним элементом, порождавшим проникающую радиацию при бомбардировке альфа-лучами. Альфа-частица и ядро бора соединяются, образуя ядро азота и нейтрон. Высокая проникающая способность потока нейтронов возникает потому, что нейтрон не обладает зарядом и, следовательно, при движении в веществе не испытывает влияния электрических полей атомов, а взаимодействует с ядрами лишь при прямых столкновениях. Нейтрону требуется также меньшая энергия, чем гамма-лучу, чтобы выбить протон, поскольку он обладает большим импульсом, чем квант электромагнитного излучения той же энергии. То, что излучение бериллия в прямом направлении оказывается более проникающим, можно связать с предпочтительным излучением нейтронов в направлении импульса падающего потока альфа-частиц.
Ч. также подтвердил гипотезу Резерфорда, что масса нейтрона должна быть равна массе протона, анализируя обмен энергией между нейтронами и протонами, выбитыми из вещества, как если бы речь шла о соударении бильярдных шаров. Энергообмен особенно эффективен, поскольку их массы почти одинаковы. Он также проанализировал треки атомов азота, подвергшихся соударению с нейтронами, в конденсационной камере - приборе, изобретенном Ч.Т.Р. Вильсоном. Пар в конденсационной камере конденсируется вдоль наэлектризованной дорожки, которую оставляет ионизирующая частица при взаимодействии с молекулами пара. Дорожка видна, хотя сама частица и невидима. Поскольку нейтрон не оказывает непосредственно ионизирующего воздействия, его след не виден. Ч. пришлось устанавливать свойства нейтрона по треку, оставляемому после соударения с атомом азота. Оказалось, что масса нейтрона на 1,1% превышает массу протона.
Эксперименты и расчеты, проделанные другими физиками, подтвердили выводы Ч., и существование нейтрона было быстро признано. Вскоре после этого Вернер Гейзенберг показал, что нейтрон не может быть смесью протона и электрона, а представляет собой незаряженную ядерную частицу - третью субатомную, или элементарную, частицу из тех, что были открыты. Предложенное Ч. доказательство существования нейтрона в 1932 г. в корне изменило картину атома и проложило путь для дальнейших открытий в физике. У нейтрона было и практическое применение как у разрушителя атома: в отличие от положительно заряженного протона он не отталкивается при подходе к ядру.
'За открытие нейтрона' Ч. был награжден в 1935 г. Нобелевской премией по физике. 'Существование нейтрона полностью установлено, - сказал Ханс Плейель из Шведской королевской академии наук в своей речи на церемонии вручения, - в результате чего ученые пришли к новой концепции строения атома, которая лучше согласуется с распределением энергии внутри атомных ядер. Стало очевидным, что нейтрон образует один из строительных кирпичей, из которых состоят атомы и молекулы, а значит, и вся материальная Вселенная'.
Ч. перешел в 1935 г. в Ливерпульский университет, чтобы создать новый центр физических ядерных исследований. В Ливерпуле он следил за модернизацией университетского оборудования и руководил строительством циклотрона - установки для ускорения заряженных частиц.
Когда в 1939 г. началась вторая мировая война, британское правительство обратилось к Ч. с запросом, возможна ли цепная ядерная реакция, и он начал с помощью ливерпульского циклотрона исследовать эту возможность. В следующем году он вошел в состав Модовского комитета, небольшой избранной группы видных британских ученых, которая сделала оптимистические выводы о возможности Британии создать атомную бомбу, и стал координатором экспериментальных программ по разработке атомного оружия в Ливерпуле, Кембридже и Бристоле. В дальнейшем, однако, Британия решила присоединиться к американской программе создания ядерного оружия и направила своих ученых, занимавшихся ядерными исследованиями, в Соединенные Штаты. С 1943 по 1945 г. Ч. координировал усилия британских ученых, работавших над Манхэттенским проектом (секретная программа создания атомной бомбы).
Ч. вернулся в Ливерпульский университет в 1946 г. Два года спустя он отошел от активной научной деятельности и возглавил Гонвилл-энд-Кайус-колледж. В 1958 г. он переехал в Северный Уэльс с женой Эйлин, до замужества Стюарт-Браун, на которой женился в 1925 г. Они вернулись в Кембридж в 1969 г., чтобы быть поближе к своим дочерям-близнецам. Ч. умер 5 лет спустя в Кембридже.
Кроме Нобелевской премии, Ч. получил медаль Хьюгса (1932 г.) и медаль Копли (1950 г.) Королевского общества, медаль 'За заслуги' правительства США (1946 г.), медаль Франклина Франклиновского института (1951 г.) и медаль Гутри Физического института в Лондоне (1967 г.). Получив дворянское звание в 1945 г., он являлся обладателем почетных степеней 9 британских университетов и был членом многих научных обществ и академий в Европе и Соединенных Штатах.


Комментарии пользователей
Написать комментарий
Написать комментарий
Ссылки по теме:
Кук, Джеймс (James Cook)
Кук, Джеймс (James Cook)
МАКСВЕЛЛ Джеймс Клерк
ФЕЛПС Джеймс (James Phelps)
ФЕЛПС Джеймс (James Phelps)

Новости по темеЧЕДВИК Джеймс:
ЧЕДВИК Джеймс, фото, биография
ЧЕДВИК Джеймс, фото, биография ЧЕДВИК Джеймс Английский физик Нобелевская премия по физике, 1935 г., фото, биография
RIN.ru - Российская Информационная Сеть
СМИ

Криминал

Мода

ЗВЕЗДНАЯ ЖИЗНЬ

Политика

Театр

Герои

Государство

Искусство

Музыка

Спорт

Бизнес

Культура

Кино

Медицина

Фотомодели

Исторические личности

Наука

Общество

Люди на монетах

Бизнес

Литература


 

 

 

 
Copyright © RIN 2002 - * Обратная связь