Знаменитости Видео знаменитостей Новости Отзывы Рейтинг RSS English
Поиск

Популярные
СЕЙФРИД Аманда (Amanda Seyfried)СЕЙФРИД Аманда (Amanda Seyfried)
ФАНДЕРА ОксанаФАНДЕРА Оксана
ЧАДОВ Алексей АлександровичЧАДОВ Алексей Александрович
Сибагатуллин Фатих СаубановичСибагатуллин Фатих Саубанович
Сара КоннорСара Коннор
ещё персоны......
Новости
Конструктор сайтов
Бесплатный хостинг
Бесплатно скачать MP3
Библиотека
Всего персон: 23932





Все персоны
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ЛОРЕНЦ Хендрик

(Голландский физик Нобелевская премия по физике, 1902 г.)

Комментарии для ЛОРЕНЦ Хендрик
Биография ЛОРЕНЦ Хендрик
18 июля 1853 г. - 4 февраля 1928 г.
Голландский физик Хендрик Антон Лоренц родился в Арнхеме в семье Геррита Фредерика Лоренца и Гертруды (ван Гинкель) Лоренц. Отец Л. содержал детские ясли. Мать мальчика умерла, когда ему исполнилось четыре года. Через пять лет отец женился вторично на Люберте Хупкес. Л. учился в средней школе Арнхема и имел отличные оценки по всем предметам.
В 1870 г. он поступил в Лейденский университет, где познакомился с профессором астрономии Фредериком Кайзером, чьи лекции по теоретической астрономии заинтересовали его. Менее чем за два года Л. стал бакалавром наук по физике и математике. Возвратившись в Арнхем, он преподавал в местной средней школе и одновременно готовился к экзаменам на докторскую степень, которые он отлично сдал в 1873 г. Через два года Л. успешно защитил в Лейденском университете диссертацию на соискание ученой степени доктора наук. Диссертация была посвящена теории отражения и преломления света. В ней Л. исследовал некоторые следствия из электромагнитной теории Джеймса Клерка Максвелла относительно световых волн. Диссертация была признана выдающейся работой.
Л. продолжал жить в родном доме и преподавать в местной средней школе до 1878 г., когда он был назначен на кафедру теоретической физики Лейденского университета. В то время теоретическая физика как самостоятельная наука делала еще только первые шаги. Кафедра в Лейдене была одной из первых в Европе. Новое назначение как нельзя лучше соответствовало вкусам и наклонностям Л., который обладал особым даром формулировать теорию и применять изощренный математический аппарат к решению физических проблем.
Продолжая заниматься исследованием оптических явлений, Л. в 1878 г. опубликовал работу, в которой теоретически вывел соотношение между плотностью тела и его показателем преломления (отношением скорости света в вакууме к скорости света в теле - величине, характеризующей, насколько сильно отклоняется от первоначального направления луч света при переходе из вакуума в тело). Случилось так, что несколько раньше ту же формулу опубликовал датский физик Людвиг Лоренц, поэтому она получила название формулы Лоренца - Лоренца. Однако работа Хендрика Л. представляет особый интерес потому, что основана на предположении, согласно которому материальный объект содержит колеблющиеся электрически заряженные частицы, взаимодействующие со световыми волнами. Она подкрепила отнюдь не общепринятую тогда точку зрения на то, что вещество состоит из атомов и молекул.
В 1880 г. научные интересы Л. были связаны главным образом с кинетической теорией газов, описывавшей движение молекул и установление соотношения между их температурой и средней кинетической энергией. В 1892 г. Л. приступил к формулированию теории, которую как сам он, так и другие впоследствии назвали теорией электронов. Электричество, утверждал Л., возникает при движении крохотных заряженных частиц - положительных и отрицательных электронов. Позднее было установлено, что все электроны отрицательно заряжены. Л. заключил, что колебания этих крохотных заряженных частиц порождают электромагнитные волны, в том числе световые и радиоволны, предсказанные Максвеллом и открытые Генрихом Герцем в 1888 г. В 1890-е гг. Л. продолжил занятия теорией электронов. Он использовал ее для унификации и упрощения электромагнитной теории Максвелла, опубликовал серьезные работы по многим проблемам физики, в том числе о расщеплении спектральных линий в магнитном поле.
Когда свет от раскаленного газа проходит через щель и разделяется спектроскопом на составляющие частоты, или чистые цвета, возникает линейчатый спектр - серия ярких линий на черном фоне, положение которых указывает соответствующие частоты. Каждый такой спектр характерен для вполне определенного газа. Л. предположил, что частоты колеблющихся электронов определяют частоты в испускаемом газом свете. Кроме того, он выдвинул гипотезу о том, что магнитное поле должно сказываться на движении электронов и слегка изменять частоты колебаний, расщепляя спектр на несколько линий. В 1896 г. коллега Л. по Лейденскому университету Питер Зееман поместил натриевое пламя между полюсами электромагнита и обнаружил, что две наиболее яркие линии в спектре натрия расширились. После дальнейших тщательных наблюдений над пламенем различных веществ Зееман подтвердил выводы теории Л., установив, что расширенные спектральные линии в действительности представляют собой группы из близких отдельных компонент. Расщепление спектральных линий в магнитном поле получило название эффекта Зеемана. Зееман подтвердил и предположение Л. о поляризации испускаемого света
Хотя эффект Зеемана не удалось полностью объяснить до появления в XX в. квантовой теории, предложенное Л. объяснение на основе колебаний электронов позволило понять простейшие особенности этого эффекта. В конце XIX в. многие физики считали (как выяснилось впоследствии, правильно), что спектры должны стать ключом к разгадке строения атома. Поэтому применение Л. теории электронов для объяснения спектрального явления можно считать необычайно важным шагом на пути к выяснению строения вещества. В 1897 г. Дж. Дж. Томсон открыл электрон в виде свободно движущейся частицы, возникающей при электрических разрядах в вакуумных трубках. Свойства открытой частицы оказались такими же, как у постулированных Л. электронов, колеблющихся в атомах.
Зееман и Л. были удостоены Нобелевской премии по физике 1902 г. 'в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения'. 'Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Л., - заявил на церемонии вручения премии Ялмар Теель из Шведской королевской академии наук. - Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Л. начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов'.
В конце XIX - начале XX в. Л. по праву считался ведущим физиком-теоретиком мира. Работы Л. охватывали не только электричество, магнетизм и оптику, но и кинетику, термодинамику, механику, статистическую физику и гидродинамику. Его усилиями физическая теория достигла пределов, возможных в рамках классической физики. Идеи Л. оказали влияние на развитие современной теории относительности и квантовой теории.
В 1904 г. Л. опубликовал наиболее известные из выведенных им формул, получившие название преобразований Лоренца. Они описывают сокращение размеров движущегося тела в направлении движения и изменение хода времени. Оба эффекта малы, но возрастают, если скорость движения приближается к скорости света. Эту работу он предпринял в надежде объяснить неудачи, постигавшие все попытки обнаружить влияние эфира - загадочного гипотетического вещества, якобы заполняющего все пространство.
Считалось, что эфир необходим как среда, в которой распространяются электромагнитные волны, например свет, подобно тому как молекулы воздуха необходимы для распространения звуковых волн. Несмотря на многочисленные трудности, встретившиеся на пути тех, кто пытался определить свойства вездесущего эфира, который упорно не поддавался наблюдению, физики все же были убеждены в том, что он существует. Одно из следствий существования эфира должно было бы наблюдаться обязательно: если скорость света измерять движущимся прибором, то она должна быть больше при движении к источнику света и меньше при движении в другую сторону. Эфир можно было бы рассматривать как ветер, переносящий свет и заставляющий его распространяться быстрее, когда наблюдатель движется против ветра, и медленнее, когда он движется по ветру.
В знаменитом эксперименте, выполненном в 1887 г. Альбертом А. Майкельсоном и Эдвардом У. Морли с помощью высокоточного прибора, называемого интерферометром, лучи света должны были пройти определенное расстояние в направлении движения Земли и затем такое же расстояние в противоположном направлении. Результаты измерений сравнивались с измерениями, произведенными над лучами, распространяющимися туда и обратно перпендикулярно направлению движения Земли. Если бы эфир как-то влиял на движение, то времена распространения световых лучей вдоль направления движения Земли и перпендикулярно ему из-за различия в скоростях отличались бы достаточно для того, чтобы их можно было измерить интерферометром. К удивлению сторонников теории эфира, никакого различия обнаружено не было.
Множество объяснений (например, ссылка на то, что Земля увлекает за собой эфир и поэтому он покоится относительно нее) были весьма неудовлетворительны. Для решения этой задачи Л. (и независимо от него ирландский физик Дж. Ф. Фитцджералд) предположил, что движение сквозь эфир приводит к сокращению размеров интерферометра (и, следовательно, любого движущегося тела) на величину, которая объясняет кажущееся отсутствие измеримого различия скорости световых лучей в эксперименте Майкельсона - Морли.
Преобразования Л. оказали большое влияние на дальнейшее развитие теоретической физики в целом и в частности на создание в следующем году Альбертом Эйнштейном специальной теории относительности. Эйнштейн питал к Л. глубокое уважение. Но если Л. считал, что деформация движущихся тел должна вызываться какими-то молекулярными силами, изменение времени - не более чем математический трюк, а постоянство скорости света для всех наблюдателей должно следовать из его теории, то Эйнштейн подходил к относительности и постоянству скорости света как к основополагающим принципам, а не проблемам. Приняв радикально новую точку зрения на пространство, время и несколько фундаментальных постулатов, Эйнштейн вывел преобразования Л. и исключил необходимость введения эфира.
Л. сочувственно относился к новаторским идеям и одним из первых выступил в поддержку специальной теории относительности Эйнштейна и квантовой теории Макса Планка. На протяжении почти трех десятилетий нового века Л. проявлял большой интерес к развитию современной физики, сознавая, что новые представления о времени, пространстве, материи и энергии позволили разрешить многие проблемы, с которыми ему приходилось сталкиваться в собственных исследованиях. О высоком авторитете Л. среди коллег свидетельствует хотя бы такой факт: по их просьбе он в 1911 г. стал председателем первой Сольвеевской конференции по физике - международного форума самых известных ученых - и ежегодно, до самой смерти, выполнял эти обязанности.
В 1912 г. Л. ушел в отставку из Лейденского университета с тем, чтобы уделять большую часть времени научным исследованиям, но раз в неделю он продолжал читать лекции. Переехав в Гарлем, Л. принял на себя обязанности хранителя физической коллекции Музея гравюр Тейлора. Это давало ему возможность работать в лаборатории. В 1919 г. Л. принял участие в одном из величайших в мире проектов предупреждения наводнений и контроля за ними. Он возглавил комитет по наблюдению за перемещениями морской воды во время и после осушения Зюйдерзее (залива Северного моря). После окончания первой мировой войны Л. активно способствовал восстановлению научного сотрудничества, прилагая усилия к тому, чтобы восстановить членство граждан стран Центральной Европы в международных научных организациях. В 1923 г. он был избран в международную комиссию по интеллектуальному сотрудничеству Лиги Наций. В состав этой комиссии входили семь ученых с мировым именем. Через два года Л. стал ее председателем. Л. сохранял интеллектуальную активность до самой смерти, последовавшей 4 февраля 1928 г. в Гарлеме.
В 1881 г. Л. женился на Аллетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей, один из которых умер в младенческом возрасте. Л. был необычайно обаятельным и скромным человеком. Эти качества, а также его удивительные способности к языкам позволили ему успешно руководить международными организациями и конференциями.
Помимо Нобелевской премии Л. был удостоен медалей Копли и Румфорда Лондонского королевского общества. Он был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Германского физического обществ. В 1912 г. Л. стал секретарем Нидерландского научного общества.


Комментарии пользователей
Написать комментарий
  • Александр для ЛОРЕНЦ Хендрик
  • так Эйнштейн не был первым, он пришел на все готовое
    Написать комментарий
    Ссылки по теме:
    ЗЕЕМАН Питер (Zeeman Pieter)
    ЛОРЕНЦ Иван Леопольдович
    КЕЕЗОМ Виллем-Хендрик

    Новости по темеЛОРЕНЦ Хендрик:
    ЛОРЕНЦ  Хендрик, фото, биография
    ЛОРЕНЦ  Хендрик, фото, биография ЛОРЕНЦ  Хендрик Голландский физик Нобелевская премия по физике, 1902 г., фото, биография
    RIN.ru - Российская Информационная Сеть
    СМИ

    Криминал

    Мода

    ЗВЕЗДНАЯ ЖИЗНЬ

    Политика

    Театр

    Герои

    Государство

    Искусство

    Музыка

    Спорт

    Бизнес

    Культура

    Кино

    Медицина

    Фотомодели

    Исторические личности

    Наука

    Общество

    Люди на монетах

    Бизнес

    Литература

    Письмо кумиру!
    GUF (Гуф)
    Комментариев: 865
    АМИРОВ Саид Джапарович
    Комментариев: 807
    МЕЛЬНИКОВА Даша
    Комментариев: 679
    СЫЧЕВ Дмитрий
    Комментариев: 514
    Влад Топалов
    Комментариев: 398
    ДАФФ Хилари(Hilary Duff)
    Комментариев: 385

     

     

     

     
    Copyright © RIN 2002 - * Обратная связь