ШРЕДИНГЕР Эрвин(Австрийский физик Нобелевская премия по физике, 1933 г.)
Комментарии для ШРЕДИНГЕР Эрвин
Биография ШРЕДИНГЕР Эрвин
12 августа 1887 г. - 4 января 1961 г. Австрийский физик Эрвин Шредингер родился в Вене. Его отец, Рудольф Шредингер, был владельцем фабрики по производству клеенки, увлекался живописью и питал большой интерес к ботанике. Единственный ребенок в семье, Эрвин получил начальное образование дома. Его первым учителем был отец, о котором впоследствии Ш. отзывался как о 'друге, учителе и не ведающем усталости собеседнике'. В 1898 г. Ш. поступил в Академическую гимназию, где был первым учеником по греческому языку, латыни, классической литературе, математике и физике. В гимназические годы у Ш. возникла любовь к театру. В 1906 г. он поступил в Венский университет и на следующий год начал посещать лекции по физике Фридриха Газенерля. чьи блестящие идеи произвели на Эрвина глубокое впечатление. Защитив в 1910 г. докторскую диссертацию, Ш. становится ассистентом физика-экспериментатора Франца Экснера во 2-м физическом институте при Венском университете. В этой должности он пребывал вплоть до начала первой мировой войны. В 1913 г. Ш. и К.В. Ф. Кольрауш получают премию Хайтингера Императорской академии наук за экспериментальные исследования радия. Во время войны Ш. служил офицером-артиллеристом в захолустном гарнизоне, расположенном в горах, вдали от линии фронта. Продуктивно используя свободное время, он изучал общую теорию относительности Альберта Эйнштейна. По окончании войны он возвращается во 2-й физический институт в Вене, где продолжает свои исследования по общей теории относительности, статистической механике (занимающейся изучением систем, состоящих из очень большого числа взаимодействующих объектов, например молекул газа) и дифракции рентгеновского излучения. Тогда же Ш. проводит обширные экспериментальные и теоретические исследования по теории цвета и восприятию цвета. В 1920 г. Ш. отправился в Германию, где стал ассистентом Макса Вина в Иенском университете, но через четыре месяца становится адъюнкт-профессором Штутгартского технического университета. Через один семестр он покидает Штутгарт и на короткое время занимает пост профессора в Бреслау (ныне Вроцлав, Польша). Затем Ш. переезжает в Швейцарию и становится там полным профессором, а также преемником Эйнштейна и Макса фон Лауэ на кафедре физики Цюрихского университета. В Цюрихе, где Ш. остается с 1921 по 1927 г., он занимается в основном термодинамикой и статистической механикой и их применением для объяснения природы газов и твердых тел. Интересуясь широким кругом физических проблем, он следит и за успехами квантовой теории, но не сосредоточивает свое внимание на этой области вплоть до 1925 г., когда появился благоприятный отзыв Эйнштейна по поводу волновой теории материи Луи де Бройля. Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением, вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике. В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц. Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что 'перескок' электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач. Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дж. Дэвиссоном и Лестером Г. Джермером в Соединенных Штатах и Дж. П. Томсоном в Англии. В свою очередь это открытие привело к созданию в 1933 г. Эрнестом Руской электронного микроскопа. Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Ш. предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Ш. в 1925 г., закончилась неудачей. Скорости электронов в теории III. были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях. Одной из причин постигшей Ш. неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно. Следующую попытку Ш. предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась выводом волнового уравнения Шредингера, дающего математическое описание материи в терминах волновой функции. Ш. назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории. Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента. Ш. показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более 'физическими'; операции же над матрицами - более громоздкими. Вскоре после того, как Гейзенберг и Ш. разработали квантовую механику, П.А. М. Дирак предложил более общую теорию, в которой элементы специальной теории относительности Эйнштейна сочетались с волновым уравнением. Уравнение Дирака применимо к частицам, движущимся с произвольными скоростями. Спин и магнитные свойства электрона следовали из теории Дирака без каких бы то ни было дополнительных предположений. Кроме того, теория Дирака предсказывала существование античастиц, таких, как позитрон и антипротон, - двойников частиц с противоположными по знаку электрическими зарядами. В 1933 г. Ш. и Дирак были удостоены Нобелевской премии по физике 'за открытие новых продуктивных форм атомной теории'. В том же году Гейзенбергу была присуждена Нобелевская премия по физике за 1932 г. На церемонии презентации Ганс Плейель, член Шведской королевской академии наук воздал должное Ш. за 'создание новой системы механики, которая справедлива для движения внутри атомов и молекул'. По словам Плейеля, волновая механика дает не только 'решение ряда проблем в атомной физике, но и простой и удобный метод исследования свойств атомов и молекул и стала мощным стимулом развития физики'. Физический смысл волнового уравнения Шредингера не является непосредственно очевидным. Прежде всего, волновая функция принимает комплексные значения, содержащие квадратный корень из -1. Ш. первоначально описывал волновую функцию как волнообразное распространение отрицательного электрического заряда электрона. Во избежание комплексных решений он ввел квадрат функции (функцию, умноженную на себя). Позднее Борн идентифицировал квадрат абсолютной величины волновой функции в данной точке как величину, пропорциональную вероятности найти частицу в указанной точке с помощью экспериментального наблюдения. Ш. не нравилась интерпретация Борна, так как она исключала определенные утверждения о положении и скорости частицы. Наряду с Эйнштейном и де Бройлем Ш. был среди противников копенгагенской интерпретации квантовой механики (названной так в знак признания заслуг Нильса Бора, много сделавшего для становления квантовой механики; Бор жил и работал в Копенгагене), поскольку его отталкивало отсутствие в ней детерминизма. В основу копенгагенской интерпретации положено соотношение неопределенности Гейзенберга, согласно которому положение и скорость частицы не могут быть точно известны одновременно. Чем точнее измерено положение частицы, тем неопределеннее скорость, и наоборот. Субатомные события могут быть предсказаны лишь как вероятности различных исходов экспериментальных измерений. Ш. отрицал копенгагенский взгляд на волновую и корпускулярную модели как на 'дополнительные', сосуществующие с картиной реальности и продолжал поиски описания поведения материи в терминах одних лишь волн. Однако на этом пути он потерпел неудачу, и копенгагенская интерпретация стала доминирующей. В 1927 г. Ш. по приглашению Планка стал его преемником на кафедре теоретической физики Берлинского университета. Он оставил кафедру в 1933 г., после прихода к власти нацистов, в знак протеста против преследования инакомыслящих и, в частности, против нападения на улице на одного из его ассистентов, еврея по национальности. Из Германии Ш, отправился в качестве приглашенного профессора в Оксфорд, куда вскоре после его прибытия пришла весть о присуждении ему Нобелевской премии. В 1936 г., несмотря на дурные предчувствия относительно своего будущего, Ш. принял предложение и стал профессором Грацкого университета в Австрии, но в 1938 г., после аннексии Австрии Германией, вынужден был оставить и этот пост, бежав в Италию. Приняв приглашение, он переехал затем в Ирландию, где стал профессором теоретической физики Дублинского института фундаментальных исследований и оставался на этом посту семнадцать лет, занимаясь исследованиями по волновой механике, статистике, статистической термодинамике, теории поля и особенно по общей теории относительности. После войны австрийское правительство пыталось склонить Ш. вернуться в Австрию, но он отказывался, пока страна была оккупирована советскими войсками. В 1956 г. он принял кафедру теоретической физики Венского университета. Это был последний пост, который он занимал в своей жизни. В 1920 г. Ш. вступил в брак с Аннемарией Бертель; детей у супругов не было. Всю жизнь он был любителем природы и страстным туристом. Среди своих коллег Ш. был известен как человек замкнутый, чудаковатый, имевший мало единомышленников, Дирак так описывает прибытие Ш. на престижный Сольвеевский конгресс в Брюсселе: 'Весь его скарб умещался в рюкзаке. Он выглядел как бродяга, и понадобилось довольно долго убеждать портье, прежде чем тот отвел Ш. номер в гостинице'. Ш. глубоко интересовался не только научными, но и философскими аспектами физики, написал в Дублине несколько философских исследований. Размышляя над проблемами приложения физики к биологии, он выдвинул идею молекулярного подхода к изучению генов, изложив ее в книге 'Что такое жизньN Физические аспекты живой клетки' ('What is LifeN The Physical Aspects of a Living Cell', 1944), оказавшей влияние на некоторых биологов, в том числе Фрэнсиса Крика и Мориса Уилкинса. Ш. опубликовал также томик стихов. Он вышел в отставку в 1958 г., когда ему исполнился семьдесят один год, и умер через три года в Вене. Кроме Нобелевской премии, Ш. был удостоен многих наград ипочестей, в том числе золотой медали Маттеуччи Итальянской национальной академии наук, медали Макса Планка Германского физического общества, и награжден правительством ФРГ орденом 'За заслуги'. III. был почетным доктором университетов Гента, Дублина и Эдинбурга, состоял членом Папской академии наук, Лондонского королевского общества, Берлинской академии наук, Академии наук СССР, Дублинской академии наук и Мадридской академии наук.
Комментарии пользователей
|
|
|